CONSUMER CONFIDENCE REPORT Report Covers Calendar Year: January 1 - December 31, 2016 Este informe contiene informactión muy importante sobre el aqua usted bebe. Tradúscalo ó hable con alguien que lo entienda bien. # I. Public Water System (PWS) Information | PWS Name: | White Hi | lle Mator | Compa | I | | | |---|--------------------------------------|----------------|----------------|-----------------------|--------------------------|---| | PWS ID# | AZ04- 08- | 039 | Compai | ny inc. | | | | Owner / Opera | ator Name: | David 8 | & Janice | Arthur | | | | l elephone # | 480-981-0 | 559 | Fay# | NI/A | E-mail | loc40400 | | We want our valued
regularly scheduled | d customers to be
meetings, pleas | e informed abo | ut their water | quality. If you would | like to learn more about | Jea1940@msn.com ut public participation or to attend any of our | | II. Drinking W | | | | at | for a | additional opportunity and meetings dates and ti | The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pickup substances resulting from the Our water source(s): One source Well # 55912606, Detrital aquifer # IV. Drinking Water Contaminants Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater Pesticides and herbicides that may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses. Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and also may come from gas stations, urban stormwater runoff, and septic systems. Radioactive contaminants, that can be naturally occurring or be the result of oil and gas production and mining activities. ### V. Vulnerable Population Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and microbiological contaminants call the EPA Safe Drinking Water Hotline at 1-800-426-4791. ### **Source Water Assessment** Based on the information currently available on the hydrogeologic settings of and the adjacent land uses that are in the specified proximity of the drinking water source(s) of this public water system, the department has given a low risk designation for the degree to which this public water system drinking water source(s) are protected. A low risk designation indicates that most source water protection measures are either already implemented, or the hydrogeology is such that the source water protection measures will have little impact on protection. VII. Definitions AL = Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements. MCL = Maximum Contaminant Level - The "Maximum Allowed" is the highest level of a contaminant that is allowed in drinking water. MCLG = Maximum Contaminant Level Goal - The "Goal" is the level of a contaminant in drinking water below which there is no known or expected risk to MFL = Million fibers per liter. MRDL = Maximum Residual Disinfectant Level. MRDLG = Maximum Residual Disinfectant Level Goal. MREM = Millirems per year – a measure of radiation absorbed by the body. NA = Not Applicable, sampling was not completed by regulation or was not required. NTU = Nephelometric Turbidity Units, a measure of water clarity. PCi/L = Picocuries per liter - picocuries per liter is a measure of the radioactivity in water. PPM = Parts per million or Milligrams per liter (mg/L). PPB = Parts per billion or Micrograms per liter (μ g/L). $ppm \times 1000 = ppb$ PPT = Parts per trillion or Nanograms per liter. ppb x 1000 = ppt PPQ = Parts per quadrillion or Picograms per liter. ppt x 1000 = ppq TT = Treatment Technique - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water. # VIII. Health Effects Language Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods-of-time because of rainfall or agricultural activity. If you are caring for an infant, and detected nitrate levels are above 5 ppm, you should ask advice from your health care provider. If arsenic is less than or equal to the MCL, your drinking water meets EPA's standards. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems. Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested. Flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available ## **Water Quality Data** | Microbiological | Violation
Y or N | Number of
Samples
Present <u>OR</u>
Highest Level
Detected | Absent (A) or
Present (P)
<u>OR</u>
Range of All
Samples (L-H) | MCL | MCLG | Sample
Month &
Year | Likely Source o
Contamination | |--|---------------------|--|--|------------|-------------|---------------------------|---| | Total Coliform Bacteria (System takes ≥ 40 monthly samples) 5% of monthly samples are positive; (System takes ≤ 40 monthly samples) 1 positive monthly sample Fecal coliform and E. Coli | Y | 1 of 12 | Present | 0 | 0 | Jan to Dec
2016 | Naturally Present in
Environment | | (TC Rule) | | | | 0 | 0 | | Human and animal | | Fecal Indicators (E. coli, enterococci or coliphage) (GW Rule) | | | | TT | n/a | | Human and animal fecal waste | | Total Organic Carbon (ppm) | | | | TT | n/a | 1 | Naturally present in | | Turbidity (NTU), surface water only | | | | TT | n/a | | the environment Soil Runoff | | Disinfectants | Violation
Y or N | Running
Annual
Average
(RAA) | Range of All
Samples (L-H) | MCL | MCLG | Sample
Month &
Year | Likely Source of Contamination | | Chloramines (ppm) | AT 1 SANCOR | | | MRDL = 4 | MRDLG = 4 | | Water additive used to | | Chlorine (ppm) | | | | MRDL = 4 | MRDLG = 4 | | control microbes Water additive used to | | Chloride dioxide (ppb) | | | | MRDL = 800 | MRDLG = 800 | | Control microbes Water additive used to | | Disinfection By-Products | Violation
Y or N | Running
Annual
Average
(RAA) <u>OR</u>
Highest Level
Detected | Range of All
Samples (L-H) | MCL | MCLG | Sample
Month &
Year | Likely Source of
Contamination | | Haloacetic Acids (ppb) (HAA5) | | | | 60 | n/a | | Byproduct of drinking | | Total Trihalomethanes (ppb)
(TTHM) | | | | 80 | n/a | | water disinfection Byproduct of drinking | | Bromate (ppb) | | | | 10 | 0 | | water disinfection Byproduct of drinking | | Chlorite (ppm) | | | | | | | water disinfection | | | | 90 th
Percentile | | 1 | 0.8 | | Byproduct of drinking water disinfection | | Lead & Copper | Violation
Y or N | AND Number of Samples Over the AL | Range of All
Samples (L-H) | AL | ALG | Sample
Month &
Year | Likely Source of
Contamination | | Copper (ppm) | N | 90 th Percentile = 0.039/0 | .039 | AL = 1.3 | ALG = 1.3 | July, 2015 | Corrosion of
household plumbing
systems; erosion of
natural deposits | | Lead (ppb) | N | 90 th Percentile = 0.00255/0 | 2.55 | AL = 15 | ALG = 0 | July, 2015 | Corrosion of
household plumbing
systems; erosion of
natural deposits | | Radionuclides | Violation
Y or N | Running
Annual
Average
(RAA) <u>OR</u>
Highest Level
Detected | Range of All
Samples (L-H) | MCL | MCLG | Sample
Month &
Year | Likely Source of
Contamination | | Beta / photon emitters (mrem/yr) | | | | 4 | 0 | | Decay of natural and | | Alpha emitters (pCi/L) | N | 5.2 pCi/L | - | 15 | 0 | March 2016 | man-made deposits Erosion of natural | | Combined Radium 226 & 228 (pCi/L) | N | .4 pCi/L | | 5 | 0 | March 2016 | deposits Erosion of natural | | franium (pCi/L) | | | | 30 | 0 | | deposits Erosion of natural deposits | | norganic Chemicals | Violation | Running | Range of All | MCL | MCLG | Sample | Likely Source of | | (IOC) | YorN | Annual
Average
(RAA) <u>OR</u>
Highest Level
Detected | Samples (L-H) | 1, | | Month &
Year | Contamination | |-----------------|------|---|---------------|-----|-----|-----------------|---| | Antimony (ppb) | N | <1.0 PPB | < 1.0 PPB | 6 | 6 | April 2013 | Discharge from
petroleum refineries;
fire retardants;
ceramics, electronics
and solder | | Arsenic (ppb) | N | <1.0 PPB | < 1.0 PPB | 10 | 0 | April 2013 | Erosion of natural
deposits, runoff from
orchards, runoff from
glass and electronics
production wastes | | Asbestos (MFL) | N | <0.2 MFL | < 0.2 MFL | 7 | 7 | April 2013 | Decay of asbestos
cement water mains;
Erosion of natural
deposits | | Barium (ppm) | N | 0.0035
PPM | 0.0035 PPM | 2 | 2 | April 2013 | Discharge of drilling
wastes; discharge from
metal refineries;
Erosion of natural
deposits | | Beryllium (ppb) | N | <1.0 PPB | < 1.0 PPB | 4 | 4 | April 2013 | Discharge from metal
refineries and coal-
burning factories;
discharge from
electrical, aerospace,
and defense industries | | Cadmium (ppb) | N | <0.5 PPB | < 0.5 PPB | 5 | 5 | April 2013 | Corrosion of
galvanized pipes;
natural deposits;
metal refineries;
runoff from waste
batteries and paints | | Chromium (ppb) | N | 42 PPB | 42 PPB | 100 | 100 | April 2013 | Discharge from steel
and pulp mills;
Erosion of natural
deposits | | Cyanide (ppb) | N | < 25 PPB | < 25 PPB | 200 | 200 | April 2013 | Discharge from
steel/metal factories;
Discharge from plastic
and fertilizer factories | | Fluoride (ppm) | N | 1.8 PPM | 1.8PPM | 4 | 4 | April 2013 | Erosion of natural
deposits; water
additive which
promotes strong teeth;
discharge from
fertilizer and
aluminum factories | | Mercury (ppb) | N | < 0.2 PPB | < 0.2 PPB | 2 | 2 | April 2013 | Erosion of natural
deposits; Discharge
from refineries and
factories; Runoff from
landfills and cropland. | | Nitrate (ppm) | N | 5.3 PPM | 5.3 PPM | 10 | 10 | March 2016 | Runoff from fertilizer
use; leaching from
septic tanks, sewage;
crosion of natural
deposits | | Vitrite (ppm) | N | <0.05 PPM | <0.05 PPM | 1 | 1 | April 2013 | Runoff from
fertilizer use;
leaching from
septic tanks,
sewage; erosion of
natural deposits | | elenium (ppb) | N | <5 PPB | < 5 PPB | 50 | 50 | April 2013 | Discharge from
petroleum and
metal refineries;
erosion of natural
deposits; discharge
from mines | | nallium (ppb) | N | < 1 PPB | < 1 PPB | 2 | 0.5 | April 2013 | Leaching from ore-
processing sites;
discharge from
electronics, glass,
and drug factorics | | Synthetic Organic
Chemicals (SOC) | Violation
Y or N | Running Annual Average (RAA) OR Highest Level Detected | Range of All
Samples (L-H) | MCL | MCLG | Sample
Month &
Year | Likely Source of Contamination | |--------------------------------------|---------------------|--|-------------------------------|-----|------|---------------------------|--| | 2,4-D (ppb) | N | < 0.1 | < 0.1 | 70 | 70 | March 2016 | Runoff from
herbicide used on
row crops | | 2,4,5-TP (Silvex) (ppb) | N | <0.2 | <0.2 | 50 | 50 | March 2016 | Residue of banned herbicide | | Acrylamide | - | | | TT | 0 | | Added to water
during sewage /
wastewater
treatment | | Alachlor (ppb) | N | <0.1 | <0.1 | 2 | 0 | March 2016 | Runoff from
herbicide used on
row crops | | Atrazine (ppb) | N | <0.05 | <0.05 | 3 | 3 | March 2016 | Runoff from
herbicide used on
row crops | | Benzo (a) pyrene (PAH) (ppt) | N | <2.0 | <2.0 | 200 | 0 | March 2016 | Leaching from
linings of water
storage tanks and
distribution lines | | Carbofuran (ppb) | N | <0.5 | < 0.5 | 40 | 40 | March 2016 | Leaching of soil
fumigant used on
rice and alfalfa | | Chlordane (ppb) | N | <0.1 | < 0.1 | 2 | 0 | March 2016 | Residue of banned termiticide | | Dalapon (ppb) | N | <1.0 | < 1.0 | 200 | 200 | March 2016 | Runoff from
herbicide used on
rights of way | | Di (2-ethylhexyl) adipate (ppb) | N | <0.6 | < 0.6 | 400 | 400 | March 2016 | Discharge from chemical factories | | Di (2-ethylhexyl) phthalate (ppb) | N | <0.6 | < 0.6 | 6 | 0 | March 2016 | Discharge from
rubber and
chemical factories | | Dibromochloropropane (ppt) | N | <0.01 | < 0.01 | 200 | 0 | March 2016 | Runoff/leaching
from soil fumigant
used on soybeans,
cotton, pineapples,
and orchards | | Dinoseb (ppb) | N | <0.2 | < 0.2 | 7 | 7 | March 2016 | Runoff from
herbicide used on
soybeans and
vegetables | | Diquat (ppb) | N | <0.4 | < 0.4 | 20 | 20 | March 2016 | Runoff from
herbicide use | | Dioxin [2,3,7,8-TCDD] (ppq) | N | <5.0 | < 5.0 | 30 | 0 | March 2016 | Emissions from
waste incineration
and other
combustion;
discharge from
chemical factories | | Endothall (ppb) | N | <5.0 | < 5.0 | 100 | 100 | March 2016 | Runoff from
herbicide use | | Endrin (ppb) | N | <0.01 | < 0.01 | 2 | 2 | March 2016 | Residue of banned insecticide | | Epichlorohydrin | | | | TT | 0 | | Discharge from
industrial chemical
factories; an
impurity of some
water treatment
chemicals | | thylene dibromide (ppt) | N | <1.0 | < 1.0 | 50 | 0 | March 2016 | Discharge from | | ilyphosate (ppb) | N · | <6.0 | < 6.0 | 700 | 700 | March 2016 | petroleum refineries Runoff from | | eptachlor (ppt) | N · | <10 | < 10 | 400 | 0 | March 2016 | herbicide use Residue of banned | | eptachlor epoxide (ppt) | N · | <10 < | < 10 | 200 | 0 | March 2016 | Breakdown of
heptachlor | | | | | | | | | COSTRUMENTO CAT | | 1,2-Dichloropropane (ppb) | N | <0.5 | <0.5 | 5 | 0 | March 2016 | Discharge from industrial chemical factories | |------------------------------|---|--------|--------|-----|-----|------------|---| | Ethylbenzene (ppb) | N | <0.5 | <0.5 | 700 | 700 | March 2016 | Discharge from petroleum refinerie | | Styrene (ppb) | N | <0.5 | <0.5 | 100 | 100 | March 2016 | Discharge from
rubber and plastic
factories; leaching
from landfills | | Tetrachloroethylene (ppb) | N | <0.5 | <0.5 | 5 | 0 | March 2016 | Discharge from factories and dry cleaners | | 1,2,4-Trichlorobenzene (ppb) | N | <0.5 | <0.5 | 70 | 70 | March 2016 | Discharge from
textile-finishing
factories | | 1,1,1-Trichloroethane (ppb) | N | <0.5 | <0.5 | 200 | 200 | March 2016 | Discharge from
metal degreasing
sites and other
factories | | 1,1,2-Trichloroethane (ppb) | N | <0.5 | <0.5 | 5 | 3 | March 2016 | Discharge from industrial chemical factories | | Trichloroethylene (ppb) | N | <0.5 | <0.5 | 5 | 0 | March 2016 | Discharge from
metal degreasing
sites and other
factories | | Toluene (ppm) | N | <.0005 | <.0005 | 1 | 1 | March 2016 | Discharge from petroleum factories | | Vinyl Chloride (ppb) | N | <0.3 | <0.3 | 2 | 0 | March 2016 | Leaching from
PVC piping;
discharge from
chemical factories | | Xylenes (ppm) | N | <.0005 | <.0005 | 10 | 10 | March 2016 | Discharge from petroleum or chemical factories | #### XII. Violations | Type / Description | Compliance Period | Corrective Actions taken by PWS | |-------------------------|-------------------|---------------------------------| | Total Coliform Bacteria | October 2016 | 4 Resamples were all compliant | | | | 1 Section Compilating | | | | | | | | | | | | | An explanation of the violation(s) in the above table, the steps taken to resolve the violation(s) and any required health effects information are required to be included with this report. (Attach copy of Public Notice if available.)